Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase

نویسندگان

  • U Rutishauser
  • M Watanabe
  • J Silver
  • F A Troy
  • E R Vimr
چکیده

A phage endoneuraminidase that specifically cleaves alpha-2, 8-linked polysialic acid has been found to be a useful probe for examining the biological role of this sugar moiety on the neural cell adhesion molecule (NCAM). The enzyme caused a 3.3-fold increase in the rate of NCAM-dependent aggregation of membrane vesicles from chicken embryonic brain, without the nonspecific effects previously encountered with the use of exoneuraminidases. The enhancement of aggregation was closely correlated with removal of sialic acid as assessed by electrophoretic mobility. Extension of this analysis to cultures of spinal ganglia indicated that removal of sialic acid by the endoneuraminidase results in an increase in the thickness of neurite bundles. This enhancement of fasciculation was reversed by addition of anti-NCAM Fab, suggesting that the enzyme treatment was not toxic and did not produce nonspecific effects on adhesion. Injection of the enzyme into the eyes of 3.5-d chicken embryos consistently produced a striking array of abnormalities in those parts of the neural retina that contained the highest concentrations of NCAM at the time of injection. These perturbations included a dramatic thickening of the neural epithelium in the posterior eye, a failure of cells in this region to elongate radially, formation of an ectopic optic fiber layer, and an incomplete association of the presumptive pigmented epithelium with the neural retina. These results provide the first direct evidence that the polysialic acid on NCAM has a regulatory effect on adhesion between living cells, and that the amount of this carbohydrate is critical for the normal morphogenesis of nerve tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity.

Polysialic acid (PSA) on the extracellular domain of the neural cell adhesion molecule (NCAM) reduces cell adhesion and is considered an important regulator of cell surface interactions. The hypothalamo-neurohypophysial system (HNS), whose glia, neurons, and synapses undergo striking, reversible morphological changes in response to physiological stimulation, expresses high levels of PSA-NCAM th...

متن کامل

Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule.

Many factors have been shown to promote myelination, but few have been shown to be inhibitory. Here, we show that polysialylated-neural cell adhesion molecule (PSA-NCAM) can negatively regulate myelin formation. During development, PSA-NCAM is first expressed on all growing fibers; then, axonal expression is down-regulated and myelin deposition occurs only on PSA-NCAM-negative axons. Similarly,...

متن کامل

PSA–NCAM Is Required for Activity-Induced Synaptic Plasticity

Hippocampal organotypic slice cultures maintained 10-20 days in vitro express a high level of the polysialylated embryonic form of neural cell adhesion molecule (NCAM) (PSA-NCAM). Treatment of the cultures with endoneuraminidase-N selectively removed polysialic acid (PSA) from NCAM and completely prevented induction of long-term potentiation (LTP) and long-term depression (LTD) without affectin...

متن کامل

Characterization of tumor-associated neural cell adhesion molecule in human serum.

In human serum, at least two molecular species of the neural cell adhesion molecule (NCAM) with molecular weights of 110,000-130,000 and 150,000-180,000, respectively, can be identified by Western blotting. Both are characterized by the absence of epitopes for monoclonal antibodies KD11 and MG5, which specifically recognize intracellular domains of the human NCAM transmembrane isoforms, NCAM-14...

متن کامل

Polysialic acid facilitates migration of luteinizing hormone-releasing hormone neurons on vomeronasal axons.

Luteinizing hormone-releasing hormone (LHRH) neurons migrate from the olfactory placode to the forebrain in association with vomeronasal nerves (VNN) that express the polysialic acid-rich form of the neural cell adhesion molecule (PSA-NCAM). Two approaches were used to investigate the role of PSA-NCAM: injection of mouse embryos with endoneuraminidase N, followed by the analysis of LHRH cell po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 101  شماره 

صفحات  -

تاریخ انتشار 1985